
Learning Goals: Applications of Taylor Polynomials

• Wring down the abstract formula for the nth Taylor Polynomial of F (x) at a.

• Using Tn(x) to estimate function values.

• familiarity with the general principle that you can increase accuracy of the approximation by
increasing n or decreasing the size of the interval (as long as the Taylor series converges to the
function).

• Using Taylor’s inequality to find upper bounds for the error when we approximate f(x) by Tn(x)
on an interval.

• Using Taylor’s inequality to choose an interval where an approximation by Tn(x) for a fixed value
of n has an error less than some given bound.

• Using Taylor’s inequality to choose a value of n that keeps the error of estimation below a given
bound on a fixed interval.
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Applications of Taylor Polynomials: Stewart Section 11.11

We have seen many applications of Taylor series and in this section we want to look more carefully at
those applications where we estimate the values of a function with a Taylor polynomial.

Recall that we used the linear approximation of a function in Calculus 1 to estimate the values of
the function near a point a (assuming f was differentiable at a):

f(x) ≈ f(a) + f ′(a)(x− a) for x near a.

Now suppose that f(x) has infinitely many derivatives at a and f(x) equals the sum of its Taylor series
in an interval around a, then we can approximate the values of the function f(x) near a by the first few
terms of the Taylor series at x, or the nth Taylor Polynomial for some n:

f(x) ≈ Tn(x) = f(a) +
f ′(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n.

Note that Tn(x) is a polynomial of degree n with the property that Tn(a) = f(a) and T
(i)
n (a) = f (i)(a)

for i = 1, 2, . . . , n.
Note also that T1(x) is the linear approximation given above. We would expect that as n increases, the
level of accuracy of the approximation will also increase. This is indeed the case when the Taylor series
at a converges to f(x) at values of x near a.

Example For example, we could estimate the values of f(x) = ex on the interval −4 < x < 4, by either
the fourth degree Taylor polynomial at 0 or the tenth degree Taylor. The graphs of both are shown
below.

Example (a) Find the Taylor polynomial of order three of the function f(x) = sin x at a = π
2
?

(b) Use the Taylor Polnomial of degree three to estimate sin(49π
100

).
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Example (i) Write out the general formula for the fourth degree Taylor Polynomial of a function f(x)
at a.

(ii) The following is the fourth order Taylor polynomial of a function f(x) at a = 3.

2 +
√

3(x− 3) + 10(x− 3)2 + π(x− 3)3 + 3(x− 3)4

What is f (2)(3)?

If f(x) equals the sum of its Taylor series (about a) at x, then we have

lim
n→∞

Tn(x) = f(x)

and larger values of n should give of better approximations to f(x). As with linear approxi-
mation (approximating with T1(x)), the further the value of x is from a, the weaker our approximation
with Tn(x) will be for any fixed value of n as is evident from the graphs above. We have the tools we
need to help up pick the optimal value of n and/or the optimal interval of approximation to keep our
error of approximation at the desired levels. We will work through several examples below.

We can use Taylor’s Inequality to help estimate the error in our approximation.

The error in our approximation of f(x) by Tn(x) is |Rn(x)| = |f(x)− Tn(x)|. We can estimate the size
of this error in two ways:

1. Taylor’s Inequality If |f (n+1)(x)| ≤ M for |x− a| ≤ d then the remainder Rn(x) of the Taylor
Series satisfies the inequality

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.

2. If the Taylor series is an alternating series, we can use the alternating series estimate for the
error.

Example (a) Find the fourth degree Taylor polynomial of f(x) = ex at a = 0 (the McLaurin Polynomial
of degree 4).

(b) What is the function f (5)(x)?
Is f (5)(x) increasing or decreasing on the interval −4 ≤ x ≤ 4?
Can you find an upper bound for f (5)(x) on the interval −4 ≤ x ≤ 4?

(c) Use Taylor’s inequality and the bound found in part (b) to determine the accuracy of the approx-
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imation to f(x) by T4(x) on the interval −4 ≤ x ≤ 4? (Give an upper bound for the error on this
interval).
Note: the graph of this polynomial and the function f(x) = ex appear in one of the pictures above.

(d) Find an interval around 0 for which this approximation has an error less than .001.

Example (a) Find the third Taylor polynomial of f(x) = ex at a = 2 (the polynomial and the function
are graphed below near 0).

(b) Use Taylor’s Inequality to give an upper bound for the error possible in using this approximation
to ex for 1 < x < 3.
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Example (a) Find the third Taylor polynomial of g(x) = cos x at a = π
2
.

(b) Use the fact that the Taylor series is an alternating series to determine the maximum error possible
in using this approximation to cosx for π

4
≤ x ≤ 3π

4
?

(c) Find a Taylor polynomial for cos(x) at a = π
2

for which the maximum error of estimation possible
on the interval π

4
≤ x ≤ 3π

4
is less than 106. You may use your calculator if necessary.
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Example Determine for which x the approximation of sinx by its 3rd degree MacLaurin polynomial

T3(x) (Taylor polynomial centered at 0) is accurate to within
1

3840
, by using the Alternating Series

Remainder Estimation Theorem.
Note: 3840 = 120 · 25.

• −1

2
< x <

1

2

• −1 < x < 1

• −
√

32 < x <
√

32

• − 5
√

120 < x < 5
√

120

• −120 < x < 120
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Extras
Einstein’s Theory of Special Relativity The mass of an object moving with velocity ν is

m =
m0√
1− ν2

c2

=

(
1− ν2

c2

)− 1
2

where m0 is the mass of the object when at rest and c is the speed of light. The kinetic energy of the
object is the difference between its total energy and its energy at rest:

K = mc2 −m0c
2

(a) Show that

K = m0c
2

[(
1− v2

c2

)−1/2

− 1

]
.

(b) Use your knowledge of the binomial series to find the Taylor series at 0 for (1 + x)−1/2 when
−1 < x < 1.

(c) Use the above Taylor series with x = −ν2

c2
to find a power series expression for K.

(d) Show that when ν is very small compared with c, the expression forK agrees with classical Newtonian
physics:

K =
1

2
m0ν

2.

(e) We wish to find an upper bound for the the difference between the two expressions for K

|R| =

∣∣∣∣∣m0c
2

[(
1− v2

c2

)−1/2

− 1

]
− m0ν

2

2

∣∣∣∣∣ =

∣∣∣∣m0c
2(

3

8

ν4

c4
+

5

16

ν6

c6
+ . . . )

∣∣∣∣ ,
when |ν| ≤ 100 m/s.

We use Taylor’s theorem for the remainder:

(i) If f(x) = m0c
2
[
(1 + x)−1/2 − 1

]
, find f ′′(x).
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(ii) Substituting x = −ν2

c2
, find the maximum value M of f ′′(x) on the interval |ν| ≤ 100 m/s.

(iii) Using Taylor’s Inequality

|R| ≤ M

2!
x2

along with the approximation c = 3× 108 m/s to show that

|R| < (4.2× 10−10)m0 when |ν| ≤ 100 m/s.
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